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Abstract

With the increased size and frequency of wildfire events
worldwide, accurate real-time prediction of evolving wildfire
fronts is a crucial component of firefighting efforts and for-
est management practices. We propose a wildfire spreading
model that predicts the evolution of the wildfire perimeter in
24 hour periods. The fire spreading simulation is based on
a deep convolutional neural network (CNN) that is trained
on remotely sensed atmospheric and environmental time se-
ries data. We show that the model is able to learn wildfire
spreading dynamics from real historic data sets from a series
of wildfires in the Western Sierra Nevada Mountains in Cal-
ifornia. We validate the model on a previously unseen wild-
fire and produce realistic results that significantly outperform
historic alternatives with validation accuracies ranging from
78% - 98%.

Introduction

In the past decade, over 68,000,000 acres have been burned
by wildfires in the United States alone. One of the many
consequences of this damage is economic, resulting in over
$5.1 billion costs in infrastructural damage repair [Sacadura
(2007). Additionally, there are enormous environmental,
physical and public safety risks associated with wildfires in
wilderness-urban interfaces.

Building predictive models to aid in wildfire preparation
and containment efforts is increasingly important. With ad-
vances in computational resources, wildfire modeling has
become a key component to successful forest management.
Accurate simulations of wildfires can inform best practices
for forest management, as well as real time response to wild-
fire events. In the past ten years, wildfire modeling has
grown from fully physical models to data driven models that
leverage artificial intelligence and increased coverage of fire
events.

Traditional physical models are derived from the funda-
mental laws of physics and chemistry. They model coupled
dynamics of the physical systems like diffusion, advection,
radiation, etc. Often, these are in the form of sets of cou-
pled partial differential equations and can be subject to is-
sues of numerical instability, computational complexity and

mechanistic results. Further, these types of models must be
recallibrated to extend to different areas.

Current models used by the U.S. Forest Service such as
FARSITE require rich data input that may depend on field
agents physical documentation of ecology, this is demand-
ing of time and human resources [Finney| (1998)). Further,
physical models such as [Ferragut et al.| (2007) have shown
issues in their ability to be implemented numerically. Fur-
ther, all physical models are based on explicit features based
on data but not revised by data. Thus, there is a growing data
set of recorded fires that capture spatial spreading that is not
currently being used in practice.

Deep Learning and Fire Perimeter Prediction

To reduce computation time, increase accuracy and leverage
the advances in satellite imagery, recent work has modeled
wildfire dynamics with machine learning or evolutionary
strategies. This area has seen great success with increased
accuracy of perimeter prediction from historic fires [Zheng
et al.| (2017), [Radke et al.| (2019). Crowley et al |Ganap-
athi Subramanian and Crowley| (2018)) applied a set of re-
inforcement learning algorithms to learn spreading policies
from satellite images within an agent based model.

Radke et al proposed a deep neural network algorithm ti-
tled FireCast that predicts 24 hour wildfire perimeter evo-
lution based on Satellite images and local historic weather
Radke et al.| (2019). FireCast achieves a 20% higher average
accuracy compared to the Farsite model [Finney| (1998) used
in current practice.

Deep learning models that leverage the abundance of re-
mote sensing data available have made a recent impression
on wildfire modeling [Radke et al.| (2019), (Ganapathi Sub-
ramanian and Crowley| (2018). Modern models are be-
coming capable of maintaining the precision and accuracy
of traditional physical methods while offering more flexi-
bility towards learning different environmental regions and
timescales, solving two of the problems that historic fire
models have faced. Models discussed in the literature review
largely suffer from inflexibility and require a large overhead
to be tuned to multiple climates.



Further, applications of deep learning in atmospheric
weather events such as precipitation Rodrigues et al.|(2018));
Booz et al.|(2019);|Lin et al.|(2018) have seen recent success.
The recent work of Google Al Group Kaae Sgnderby et al.
(2020) is particularly relevant to modeling wildfire spread
over time. The MetNet algorithm outperformed current state
of the art fully physical models using only historic local
atmospheric conditions and topography. Employing recur-
sive layers to capture the temporal features of precipitation
events and axial attention to encourage the model to focus
on pertinent bounding boxes within the image based feature
set, the model was able to learn high dimensional and ro-
bust features. MetNet serves as an example of the power
of deep neural models to make generalized long term asso-
ciations between remote sensing data and natural physical
processes.

Dataset

Geo data processing and data pipeline: The collection,
processing, and use of geo data is necessarily complicated
due to the many systems and standards needed to describe
the real world and the difficulty that comes with unifying
data from them. To streamline this process, a data pipeline
was constructed to conduct three primary tasks; raw data
collection, data preprocessing, and data sampling. To do
this, heavy use of several United State government agency
and commercial APIs was used to collect data, followed by
a multistep process of cropping, geo-synchronizing, and re-
projecting data layers into a final tensor to sample from. This
process is summarized in Figure [I| below:
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Figure 1: Summarized depiction of the data pipeline

This process was conducted in a step-wise fashion. First,
the Geomac historical wildfire perimeter archives USGS
(2020b) were used to collect a series of spatially embedded
and temporally distributed wildfire perimeter boundaries for
a unique fire identifier. From these boundaries, a bound-
ing box of maximum and minimum lat/lon coordinates and
an overall date interval were extracted. Using this informa-
tion, API calls were made to the API endpoints of the USGS
Landsat 8 imagery archive USGS|(2020a), the National Map
viewer for both LiDAR and Land Cover USGS|(2020c), and
to historical weather archives Meteostat| (2020).

These APIs automatically collected the relevant data for
whatever temporal resolution was possible within the time
interval in which the wildfire occurred. The raw data fetch-
ing was followed by a significant amount of data cleaning,
which involved geo-synchronizing the various data sources
so that a pixel in one image was equivalent to a pixel in an-
other. The primary type of data worked with were GeoTiffs
and GeoJSONS of various coordinate systems, all of which
were reprojected to depict a 30m x 30m pixel resolution un-
der UTC (Universal Transa Mercator) coordinates. If wild-
fire perimeters spanned over multiple satellite snapshots, all
necessary images required to represent the area upon which
the fire spread were concatenated and cropped as needed, all
with respect to the date time of the wildfire perimeter report.
Finally, the images were stacked into tensors with respect
to each wildfire perimeter report datetime, with each tensor
using the most recent Landsat 8 spectral, LiDAR, and land
cover imagery collected prior to the wildfire report. Finally,
each tensor was capped with a binary mask of the wildfire’s
perimeter at that time. This method meant that any given
tensor could contain satellite imagery captured up to one
Landsat 8 rotational period (16 days) in advance of the rel-
evant perimeter being collected, but never any satellite im-
agery after. If the USGS API reported no Landsat 8 imagery
between 16 days prior to the perimeter and the perimeter it-
self, the perimeter was excluded.

Once tensors were constructed with respect to each
perimeter date-time, they were filtered to include only one
stack per 24 hour window (as perimeters could often times
be reported within hours of each other). This was to en-
sure significant enough change between the binary masks of
each tensor but also had the added advantage of reducing
the size and complexity of the sampled data. Sampling was
conducted under two schemes: binary classification / pixel
prediction and mask generation. For both schemes, the sam-
pled X data was an n xn slice of each layer. The correspond-
ing Y data would either be the binary outcome of the pixel
around which that sample was centered, or an n X n binary
mask describing the area around the pixel around which the
original sample was centered.

Due to the number of available samples and depth of the
input tensors, the final data samples were both numerous and
large in terms of their disk space requirements. To handle



this, all samples were stored in a dynamic, non-compressed
zipfile over which a custom generator could iterated to col-
lect samples. The representation of outcomes were differ-
ent for the two different sampling schemes; binary outcomes
were embedded in each sample’s filepath and split off from
the generator during runtime. Mask outcomes were de-
scribed in their own file with a filename corresponding to
their relevant sample. A description of sampling within the
context the experiment is available in the methodology sam-
pling and Figure[2]

Produced Dataset: We have curated a dataset that covers
a large span of wildfires in the Eastern Sierra of California,
an area that is heavily effected every year by disastrous wild-
fires. This data was constructed entirely through use of the
data pipeline described above and is well suited to be used as
a training and testing set for learning models or other analy-
ses of correlation between a given fire event’s character and
environmental variables present during the duration of that
event. Perhaps one of the strongest attributes of this dataset
is there is no unexpected stochastic in the samples collected
from each wildfire’s date-time relative data tensors, as both
their random selection from the tensor and their subsequent
shuffling into training / validation / testing sets is randomly
seedable.

This final dataset contained five fires: King (2014), Rocky
(2015), Tubbs (2017), Cascade (2017), and County (2018).
For each of these fires, we collected red, green, blue, and in-
fared imagery from Landsat 8 archives USGS|(2020a). Fur-
thermore, we collected land cover (integer terrain classifica-
tions, used to distinguish rocky surfaces, vegetative surfaces,
bodies of water, etc) and LiDAR data from the USGS Na-
tional map viewer [USGS| (2020c). Weather attributes such
as wind speed and wind direction were described as single-
valued matrices with values from the closest weather station.
Finally, all tensors for each fire included a binary mask (fire,
not on fire) of the wildfire perimeter at the relevant date-
time. Specifics on how this data was sampled is available in
the experimental methodology section.

Algorithm Definition

The model described in Table[I]is simple and relatively shal-
low compared to many popular computer vision learning
models. The model was originally chosen to be simplistic
to reduce training and testing times, as we were most inter-
ested in evaluating the applicability of the model to multiple,
diverse fires rather than a single monolithic prediction task.
However, this simple architecture ultimately yielded the best
results.

Layer Operation Kernel/Pool Size  Feature Maps

1 Convolution 7x7 128
Max Pooling 2x2 -

2 Convolution 6x6 64

3 Convolution 3x3 128

4 Convolution 3x3 256
Max Pooling  2x2 -
Flatten - -

5 Dense - 1024

6 Dense - 1024

7-out Dense 1

Table 1: DNN model architecture

The model takes in a sample with 31 x 31 x 8 input di-
mensions, using the Adam optimizer with a learning rate of
0.0001, and binary cross entropy as the loss function. The 8
input dimensions are then sampled from the stacked tensors
described in the data pipeline. The model then predicts if
the middle pixel will be on fire in 24 hours. Thus, for each
pixel position, the model is taking in the states (on fire or
not on fire) and attributes (layers) of the surrounding areas,
then computing the ultimate state of the center pixel at the
next time step. If each pixel in an image represents a 30 x 30
meter square, then this model takes a (roughly) 961 x 961
meter square area and predicts if the the middle 30 x 30 me-
ter square (pixel) will be on fire in 24 hours. This model was
implemented in Python 3, using the Keras and Tensorflow
Deep Learning Frameworks. The model was tested against
other more complex algorithms including known architec-
tures such as ResNet50. This input/output scheme was cho-
sen in part because the relevant subsampling methods allow
use of relatively little data, and because this seemed like the
ideal method to provide to the model as much local informa-
tion as possible when considering the center pixel.

Experimental Evaluation
Methodology

Stochastic Spatial Sampling: Sampling is performed
without replacement, this way, it is impossible for the same
location to be drawn twice from the same time step. Sam-
pling without replacement is especially important to elimi-
nate the chance of a data leak between testing and training
sets. Samples are selected from a set of potential center pix-
els. Since this set contains all pixels within each date-time
tensor, tensors are padded with O values on all layers. Thus,
the model must employee a bit of guesswork for edge sam-
ples.

We will refer to these sampled pixels as ’points of inter-
est” (POI). Once POI have been selected, their neighborhood
is stored, as displayed visually in Figure 2] For training and
validation, a set of neighborhoods and their corresponding
POI label in the next time step is sampled from every fire in
the data set and from every available 24 hour period. From



each 24 hour tensor snapshot from a fire we sample 20,000
unique sub-tensors and corresponding labels. As different
fires burn for different durations, each fire has a different

number of days the fires burned.

X, Instance

o]+ [11]

Figure 2: Example sample instance from the King Fire near
Lake Tahoe CA. Here the X; instance shows state of the
31 x 31 grid with all 8 layers, and the historical weather
data is placed at the input to the network G(X;) and in the
X, instance in the figure the associated label is Y; = 1 as
that instance will be with in the boundary in the next time
step.

These neighborhoods are the input to a deep convolution
neural network that is learning to predict the associated la-
bel.

Results

For each of the fire simulations, we provide the accuracy and
loss over 100 epochs in Figure 3] See Figure [7] and Figure
[6]in Appendix for full result set. Overall, we see positive
performance. We notice that across the board, validation
loss and accuracy is unstable, there are dips and rises in each
of the learning curves. We see that this is dramatized by
smaller data sets, as exemplified with the performance of
the Cascade and Tubbs Fires.

These results are consistent with the King, County, Tubbs,
and Rocky fires as they all reach a validation accuracy over
90% but the Cascade fire does not reach a validation accu-
racy over 80%. The Cascade dataset is much small with only
~ 40,000 images after augmentation. This is compared to
the King fire with ~ 240,000 images after augmentation.
The Tubbs and Rocky fires have ~ 100,000 images after
augmentation, and the County fire has ~ 80,000 images.
The algorithm is able to predict whether a pixel is on fire in
the next time step depending on the 31 x 31 x 8 picture. To
understand the predicted class balances of each fire model,
the precision, recall and accuracy from a validation sets are
aggregated in Table 2]

From Table [2] we see a slight preference towards false
negatives, with a lower recall than precision. Meaning that
the model is predicting that a pixel is not on fire when it

Fire Validation Accuracy Recall Precision

County 0.94 0.91 0.98
King 0.97 0.97 0.98
Rocky 0.91 0.88 0.96
Tubbs 0.96 0.96 0.97
Cascade 0.77 0.75 0.82

Table 2: Descriptive results of model performance on vali-
dation set indicate that each model was able to predict the
states of validation pixel neighborhoods with a high accu-
racy balanced across classes.

actually is. Looking at the recall of this model, the Tubbs
fire has the highest with 93.3% while the Cascade has the
lowest with 69.8%. The King fire has a recall of 90.9%, the
County fire 87.3% and the Rocky fire 85.1%. The results do
vary with each fire.

Regional Model Training After pooling the data with all
5 fires, we train the binary architecture over ~ 540, 000 im-
ages. The model with the pooled data will give the sense of
the predictions over the full region of fires rather than just a
single one.
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(a) The accuracy per epoch of the train and validation sets for pooled
fires.
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(b) The binary loss per epoch of the train and validation sets for
pooled fires.

Figure 4

Figure[]shows the loss and accuracy for training over 100
epochs. The training does start to over fit after the first 15
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Figure 3: The binary classification task accuracy for two sample fires. Each fire was run for 100 epochs. The training accuracy
does converge, and the model seems to only overfit for the Rocky and Cascade fires. See Fig[6in the appendix for total regional

performance.

epochs, and the validation accuracy does seem to plateau at
about 97.5% accuracy. The loss follows the same trend at
the accuracy as the model seems to start overfitting around
epoch 15. To understand the actually predictions of the
model. The confusion matrix with the testing set of 180, 000
images is shown in Figure 5]

All Fires
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No Fire

True label

False Neg
157%

Fire

| 1
No Fire Fire

Predicted label

Accuracy=0974
Precision=0.972
Recall=0.959
F1 Score=0.965

Figure 5: The confusion matrix of the pooled fires. Each
label is normalized based on the total number of samples
in the test set. The final accuracy, precision. recall and F1
score is located below.

Figure[5]shows the model predicts false negative and false
positive at a fairly event rate. This is shown with the high
precision, recall, and F1 scores. The model is able to take a
random 31 x 31 x 8 tensor from the stack and predict if the
middle pixel will be on fire with 97.4% accuracy. This re-
gional model gives the a sense of possible predictions given
the historical data of these fires.

Regional Model Validation To validate the Regional
Sierra Nevada fire, model we present an additional data set
documenting the progression of a held out wildfire, specif-
ically, the Rim Fire, which ran from August 17th, 2013 to
November 4th of 2014, burning 257,6314 acres of land in
the Sierra Nevada mountain range. To validate the model,
we will sample the spatial data tensors as described in the
training data generation and make 24 hour predictions of se-
lected points across a subset of time intervals representing
the initial, halfway point and final stages of the fire.

We show that from the inputs of the previous days envi-
ronmental conditions and fire perimeter, the model can ac-
curately predict the following days across all sampled days
of the wildfire.

Conclusion

We propose a CNN based regional wildfire forecasting
model. By training the model to associate changes in
the spatial atmospheric and environmental conditions, with
changes the perimeter of the wildfire we accurately predict
the evolution of several wildfires in the Sierra Nevada re-
gion of California. The spatial inputs include temporal red,
blue, green and ultraviolet spectral images, land-cover and
pixel state masks, temperature, wind speed, wind direction
and precipitation. All data instances are temporally synchro-
nized to the highest frequency possible given the availability
of the raw data. The model takes in a 31x31x8 tensor and
outputs a binary value indicating the future state of the ten-



sors geo-located center. We show that the model is able to
make accurate predictions on held out samples from train-
ing fires and completely unseen wildfires in similar regions
within the Sierra Nevada’s. The predictions hold up for dif-
ferent stages of the fire, showing both generality over differ-
ent types of landscapes and temporal phases of the fire.

Next Steps

The next steps of this work include building a general model
using world wide recorded fires and applying transfer learn-
ing to fine tune the model to particular regions. Additionally,
by performing classification on every single possible point
within a region, the model will generate a continuous dense
prediction mask allowing the predictions to be passed back
into the model as a new set of initial conditions.
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Figure 6: Individual fire model accuracies are steadily increasing with notable instability, potentially due to a relatively smaller
data set. Notably the Tubbs and Cascade trained models show the largest variance and least convergence.
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