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ABSTRACT
With the increased size and frequency of wildfire events world-
wide, accurate real-time prediction of evolving wildfire fronts is a
crucial component of firefighting efforts and forest management
practices. We propose a cellular automaton (CA) that simulates the
spread of wildfire. We embed the CA inside of a genetic program
(GP) that learns the state transition rules from spatially registered
synthetic wildfire data. We demonstrate this model’s predictive
abilities by testing it on unseen synthetically generated landscapes.
We compare the performance of a genetic program (GP) based on a
set of primitive operators and restricted expression length to null
and logistic models.We find that the GP is able to closely replicate
the spreading behavior driven by a balanced logistic model. Our
method is a potential alternative to current benchmark physics-
based models.

CCS CONCEPTS
• Applied computing → Environmental sciences; Physical
sciences and engineering; • Computing methodologies →
Agent / discrete models.
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1 INTRODUCTION
In addition to their natural role in ecosystem dynamics [11], wild-
fires can morph into natural disasters that threaten human lives,
property and ecosystems. Each year, between 4 × 106 and 8 × 106
acres of land are damaged by wildfires, causing USD $5.1 billion
cost in infrastructural damage repair over the past 10 years [32].
For example, bushfires in southeastern Australia during 2019 and
2020 have burned ≈ 5 × 106 ha, destroyed over 2000 homes and
killed at least 24 people. Effective wildfire modeling can help inform
wildfire response decision making and forest management policy.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’20, July 8–12, 2020, Cancún, Mexico
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7128-5/20/07. . . $15.00
https://doi.org/10.1145/3377930.3389836

We propose FireGen, an evolutionary stochastic cellular automaton
model that predicts forest fire growth. Given information about the
local ecology, topology and weather systems, a set of probability
distributions are learned from time series of birds eye view images
of historic wildfires. Given a current fire burning in a known ecosys-
tem, ecological and atmospheric data can be used to predict its burn
path. We produce test accuracies up to 74% predicting fire paths
based on unseen synthetic data sets. The performance of FireGen
is compared to baseline genetic algorithms.

1.1 Wildfire Modeling
Building predictive models to aid in wildfire preparation and con-
tainment efforts is an important but difficult task. The coupling of
the atmospheric systems and the spreading of fire contribute to the
difficulty of modeling the wildfires. Current cutting-edge wild fire
models are comprised of sets of coupled nonlinear partial differen-
tial equations that estimate the physical processes of ignition and
combustion such as reaction diffusion, advection and convection
[16, 17, 29]. The US forest service currently uses an ensemble fore-
casting model implemented by by Finney et al [1, 7]. The model
runs many iterations of the FARSITE fire model altering initial con-
ditions and weather predictions based on historical data [6]. These
models are computationally costly and cannot be performed using
computational resources typically available to forest service depart-
ments [1]. Additionally, they can be numerically unstable which
can lead to false predictions informing disaster reaction decisions
[12, 13]. Assumptions about physical laws are non uniform across
different models and thus there is not a universal fire spreading
theory, but rather many competing ones. These models are fully
deterministic and will yield the same results given the same initial
condition. Calculating relative uncertainty in a given prediction
can be difficult and require ensemble forecasting.

1.2 Modeling spatial spreading process with
machine learning

To reduce computation time, increase accuracy and leverage the
advances in satellite imagery, recent work has modeled wildfire
dynamics with machine learning and evolutionary strategies. This
area has seen great success with increased accuracy of perimeter
prediction from historic fires [33], [26]. Crowley et al [8] applied a
set of reinforcement learning algorithms to learn spreading policies
from satellite images within an agent based model.

Radke et al proposed a deep neural network algorithm titled
FireCast that predicts 24 hour wildfire perimeter evolution based
on Satellite images and local historic weather [26]. FireCast achieves
a 20% higher average accuracy compared to the Farsite model [6]
used in current practice.
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Spatial spreading processes are commonly simulated using cellu-
lar autamaton (CA) [14],[10],[33] and agent basedmodels ABMS[28],[9].
ABMs can been used to simulate complex systems by prescribing
rule sets to independent agents. In the case of a wildfire model,
each cell on fire represents an agent that can spread across the
landscape and ignite neighboring cells based on a probability distri-
bution that considers information about the current neighborhood.
By evolving the function that governs agent behavior, agent based
models can be used to predict system level spreading based on
ground truth data. System level behavior is predicted by fine tuning
agent decision functions. For example, Zhong et al [34] modeled
evacuation crowd dynamics by evolving the agent rule set. This
work aimed to predict the decision making process of an individual
in an emergency evacuation of a building. Agents choose which
exit to leave a building from based on distance, probable safety
and volume of other agents headed that way. An optimal rule set
will balance each of those variables to optimize the likelihood that
all agents are able to leave the building safely. Fitting a symbolic
regression to simulation results using an evolving rule-set exposes
a population probability distributions that optimally weigh the con-
sidered variables. A number of fields have used this method to build
realistic simulations used for further system prediction [4], [19],
[18].

We propose a CA that trains a series of genetic programs to
replicate seen and unseen wildfire simulations. We first introduce
the mechanics of the CA, then give an overview of the evolutionary
process and experimental design. We show that the underlying
spreading behavior can be learned and replicated by a genetic pro-
gram based on synthetic environmental features.

2 METHODS
We fit a symbolic regression to data generated by wildfire simula-
tions. A cell in the landscape grid can take on a number of state,
including a fire state. Changes in states can spread discretely across
the landscape according to a function of a site local Von Neumann
neighborhood[30]. We propose a naive spreading function and ex-
amine how well the regression can reproduce the spread patterns
generated. We compare different genetic programs embedded in a
CA by calculating how well they reproduce synthetic burns. We
will first describe the CA that simulates the spread of fire and the
generation of the synthetic data, then we will discuss the different
evolutionary algorithms that attempt to learn the rules that govern
the spread of fire.

2.1 Cellular Automaton
CAs were initially proposed by Von Neumann and are used to
model spreading dynamics in discrete time and space [21]. CAs
are well suited for simulating spreading on a grid. Each site on the
grid has attributes that describe its unique state. The behavior of
interest spreads across the grid when cells adapt according to their
neighbors. In modeling a wild fire, we are interested in the relations
between ignition probability and a number of local environmental
factors, such as wind speed and direction, temperature, and relative
humidity. Over time fire spreads from one cell to another based on
a probability distribution that treats these factors as (learn-able)
parameters.

Figure 1: At each time-step of the simulation, all cells that
are adjacent to a cell on fire are considered for ignition. The
probability of ignition is determined by passing features
from the cites Von Neumann neighborhood into an ignition
probability distribution. Features are calculated from the 6
layers present in the visualized data structure, temperature,
humidity, state, wind direction, wind speed and elevation.

As we show in Fig.1, each position on the landscape grid has
six attributes: elevation, wind direction, wind speed, temperature,
humidity, and burn state. The burn state attribute represents the
state of the cell, in this case either on fire or not. The Von Neumann
neighborhood is defined as the four orthogonal cells as indicated
by white arrows in Fig. 1. Spreading behaviors on a grid surface are
often modelled using this type of neighborhood [30]. At each time-
step, the attributes of the neighborhood of each cell that borders
the fire front contribute to the probability that the cell will catch
fire.

In traditional CA models, the probability distribution that deter-
mines if a cell will adapt the behavior of its neighbor is static and
prescribed by the CA modeler. However, in this work, we evolve
the spreading function through symbolic regression. In each simu-
lation, the CA runs for t time-steps and each cell updates its state
based on its neighbors’ attributes. At the end of a time-step, the
perimeter of the fire expands probabilistically. At the end of the
simulation, we retain an array of the coordinates of ignited cells.

2.1.1 Synthetic data generation. We simulate fires that spread over
landscapes made of the six layers described in 1. The state layer is
a binary matrix indicating whether a site is on fire or not. To build
all other layers we generate matrices of smoothed-random floating
points by implementing the Perlin noise algorithm [22] [23]. This
iterative technique allows for the user to control how smooth or
rough the generated spatial distribution is.

Fig.2a - Fig.2b shows the evolution of a Gaussian sample from
random noise to a smoothed landscape. Over many iterations, the
random sample begins to resemble a realistic smooth landscape,
as seen in Fig. 2, which is the result of 100 iterations of this
procedure.

We generated each layer of a landscape using Perlin noise due
to its abilities to produce natural gradients and its longstanding use
in computer generated images [23, 24]. We generated a single layer
for each attribute considered in the model (topography, wind speed
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(a) Random noise, t0

(b) Perlin Noise, t24

Figure 2: Random values are sampled from Gaussian distri-
butions and embedded over a matrix. We interpolate slopes
between neighboring sites within the matrix, and their
neighbors to describe smooth gradients over the sampled
values.We use the quintic fade function 6t5 − 15t4 + 10t3 to in-
terpolate smooth curves between all sites and those within
their neighborhood

and direction, etc). We define a binary state layer that changes over
the course of a simulation. The binary state layer encodes the state
of every cell at a given time as either on fire (1) or not (0). These
matrices are then stacked together to form a landscape in which a
fire can be simulated on.

2.1.2 Feature engineering. Using the six attributes layers – eleva-
tion (Z ), wind direction (wd), wind speed (ws), humidity, and burn
states (S), we generate a set of four features that describe how the
neighborhood affects the ignition likelihood of a central cell. In the
case of the temperature and humidity, we take the average over
the neighborhood, producing features θ , ϕ, respectively. Since fire

is more likely to spread uphill then down, the elevation feature, γ ,
weighs fire that is downhill from the central cell more than fire that
is uphill from the central cell. Fire moves uphill more quickly as
reported by the Verisk Wildfire Analysis group, [32]. Thus, we have

γ =
∑
i
I (Si = 1)e−∆Zi (1)

∆Zi = Zi − Z0, (2)

where Zi is the elevation of the i-th neighbor or the central cell,
Z0 is the elevation of the central cell, and I (Si = 1) is an indicator
variable that is 1 when the i-th neighbor is on fire and 0 otherwise.

Akin to elevation, we define a wind feature that reflects the
fact that fire spreads downwind more readily than upwind. The
wind feature, ω weighs fire that is upwind more than fire that
is downwind. The wind feature is given in equations Eq.3, Eq.4,
wherews represents wind speed,wd represents wind direction with
i and j represent the spatial coordinates of the cell on the grid.

ω =
∑
i
I (Si = 1)ewi (3)

wi = wsi ∗ (c fi ∗ cos(wdi ) + s fi ∗ sin(wdi )) (4)

where c fi is a horizontal factor and s fi is a vertical factor, corre-
sponding to cosine and sine evaluation. Both factors are based on
the relative position of the i-th neighbor to the central cell and are
used to include the component of the wind that is blowing toward
(or away from) the center cell. For example, if the neighbor is north
of the central cell, then c fi = 0 and s fi = −1.

These features then become inputs to a probability distribution
that determines if a given cell will catch fire based on its neighbor-
hood.

2.1.3 Spread probability distribution. To generate the burn history
included in the synthetic data sets, a 5 parameter fixed balanced
logistic function is used, See Eq.5. Feature vector [ω,γ ,θ , ϕ] is given
by ®F .

Logistic Model: logit[p( ®F )] = β + 0.8ω + 6γ + 0.2θ − 0.2ϕ (5)

This probability distribution is sampled during fire simulations
to build synthetic burn perimeters, as displayed in 3. Once this data
was generated, our focus is to see how well the genetic program can
evolve a set of functions that reproduces burn patterns. We com-
pare three different models: a null constant model, a logistic model
and an unrestricted algebraic model. The null model is composed
of a single tunable bias parameter β0 that is fit to the data. The
model, thus, determines only the rate of fire spread, regardless of
the neighborhood. Additionally, we consider a 5 parameter logistic
model whose β parameters are fit to synthetic data. The output of
these functions are probabilities that a given site will catch fire.

Null Model: p(F ) = β0 (6)

Logistic Model: logit[p( ®F )] = β0 + β1ω + β2γ + β3θ + β4ϕ (7)

The unrestricted algebraic model is free to take any form given
the bank of potential operators and terminals. The length of the
expression is limited to a tree depth of 17 [15]. We will refer to this
model as the genetic programmodel. Comparing these three models
represents a good scope of expected performance. The constant

1091



GECCO ’20, July 8–12, 2020, Cancún, Mexico Green et al.

model is a baseline, while the logistic model serves as an upper
bound on the accuracy of the genetic program model, as it already
has the same functional form as the underlying spreading function,
and must only tune coefficients. All three models are evolved under
the same set of hyper-parameters and learning schemes.

2.2 Implementation of Genetic Program
Validity and fitness of expressions are subsequently used to select
ideal solutions and discard poor ones using tournament selection,
with tournament size 4. The best performing individuals will be
further subjected to cross-over and mutation. Evolution was imple-
mented using the python library DEAP [27] according to the basic
genetic programming as specified by Koza [15].

An individual in the population represents a candidate probabil-
ity distribution for fire ignition with fitness determined by howwell
it can reproduce a known fire event using the cellular automata.

Individuals are represented as syntax trees constrained to nodes
of primitive operators and terminals. The operator set contains
addition, subtraction, multiplication, protected division, negation,
and basic trigonometric functions (sin, cosine). The terminal set is
comprised of the features from of any given positions neighbor-
hood (e.g. floating point values denoting that positions attributes:
elevation, temperature, humidity, wind speed, and wind direction)
as well as ephemeral constants in the range [-10,10]. Additionally,
the tree is limited to a depth of 17. We impose this limitation to
reduce code bloat and over-fitting, a common problem for genetic
programs [5]. After a function is evaluated on a cells neighborhood
features, a sample from the standardized normal distribution is
drawn. If the output exceeds the sample, then the cell will ignite.

2.3 Evaluation of candidate models
Evaluation of the genetic program is conducted under two primary
schemes: by evaluating over initial and final states of multiple
landscapes, or by evaluating over each time-step of a simulation on a
single landscape. This approach captures the ability of an individual
to perform well at two timescales, reducing heterogeneity within
the population.

2.3.1 Experiment one: Learning from multiple landscapes. To calcu-
late the fitness of an individual, the individual is used to simulate
a set of fires across a set of landscapes. The burn simulation pro-
duces a predicted burn data set comprised of final states maps for
each landscape. From the resulting data, the average intersection
over the union (IoU) of the true and predicted state maps for each
landscape is calculated. The IoU is commonly used as a cost func-
tion in reinforcement learning and image detection settings [2]
[20]. The magnitude of the IoU indicates how well the individual
predicted the spread of fire in the allotted time window. To gen-
erate the reported experimental results, the GP was trained on 10
landscapes and tested on 10 additional landscapes. Training on
multiple landscapes puts evolutionary pressure on solutions being
able to generalize to different environments. This approach also
prevents the GP from simply learning the Perlin noise distributions
that generated the synthetic landscapes. We discuss and report the
results of this experiment in Figs. 4,5 and 6.

2.3.2 Experiment two: Learning over single timesteps. Alternatively,
we introduce another training scheme that prioritizes how well an
individual can train on one time-step to predict the next. One time
step is defined as the period in which each cell on the landscape
grid is considered for ignition once. In this way, we hope to capture
(and subsequently evolve) the behavior of the wildfire on that one
specific landscape at any given time-step rather than its behavior
overall. For example, the evolving model is given the burn state of
the first time-step of a ground truth burn for a specific landscape,
asked to predict the second, then given a fitness equivalent to the
IoU of that prediction with respect to the true burn state of the
second time-step. These preliminary fitnesses are found using each
time-step in the training data, then averaged to provide an overall
measure. The only time-step omitted from this process is the last (as
there is no subsequent time-step to provide a basis for calculating
IoU). This approach was therefore attempted on a separate set of
data than the first experiment, but this data was seeded, generated,
and given a ground truth ’burn’ using the same methods as the
initial / final landscape state method.

3 RESULTS
We first describe the behavior of fixed spreading distributions that
are used to generate synthetic burn patterns. We then describe
how well the genetic program, constant and logistic models per-
formed under two experiments with the goal of reproducing the
burn patterns.

3.1 Behavior of biased spread functions
To design a function used to create realistic spreading behavior, we
considered features one at a time, and visually analyzed their effect
on spreading. Fig. 3 shows spreading according to three biased
models and the result of the final balanced logits model.

In Fig. 3c, we see the fire spreading uphill along a positive
gradient of the landscape. Alternatively, in Fig. 3d, we see the
fire following the wind current, moving North West. By balancing
the contributions of the different features, we see the spreading
behavior in Fig. 3a , with fire spreading in the direction of thewind
current with discrimination to the elevation change. The balanced
function accounts for all attributes of the landscape and generates
more nuanced behavior.

3.2 Model performance of training on multiple
landscapes

Simulations were run with a training and test set both of size 10.
The evolution lasted 50 generations with populations of size 100.
This was done for both the constant and logistic models, followed
by the experimental GPmodel. Each used optimal hyper parameters
found from parameter tuning as displayed in Table 1.

In Fig. 4we see that the constant model shows no change in the
distribution of mean fitness of new individuals. Alternatively, the
logistic model shows an upward trend; individuals resulting from
crossover or mutation thus improved in mean fitness. The genetic
programming model demonstrates poor fitness in early function
evaluations but very fast improvement.

Fig. 5 shows the mean and standard deviation of the best fitness
of each generation, across 16 repetitions.
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(a) Balanced function (b) constant function

(c) Elevation-biased function (d) Wind-biased function

Figure 3: Probability distributions that bias burn probability
toward specific environmental features. The balanced distri-
bution 3a gives equal weight wind and elevation. While the
constant function 3b causes fire to spread stochastically in
every direction.

Figure 4: TheGPmodel shows an initial fitness of 0.19, lower
then both the constant and Logistic model. Both alternative
models have implicitly bounded output while the GP must
learn the correct domain over time.

Figure 5:While theGPmodel initially displays a faster learn-
ing rate, the two models converge in performance after 26
generations. The constant model indicates a reference base-
line performance of 43%, constant over generations.

We expect in the long run for the logistic model to eventually
find the right logits to match the true spreading model. Once this
happens, the GP will have a difficulty competing because its solu-
tions are much more complex. We discuss methods to reduce this
complexity in the discussion section.

Fig.6 presents the distribution of maximum fitnesses per repe-
tition from the three models in addition to the ground truth model.
The true model is the "balanced logits" model that was used to gen-
erate the burn. Due to the stochastic nature of the burn simulation,
this model fitness represents optimal fitness. The logistic model
comes close to the performance of the true model, as expected. The
constant model represents the performance of an extremely simple
model. We have separated the training and testing results. While
typically, the training results in evolutionary algorithm methods
are worse than the validation results, we believe that the variance
in the environmental layers me be favoring the validation set.

3.3 Single landscape, multiple time-step
evaluations

Another characteristic of a well fitting spreading distribution is
the ability to foresee short term changes in the fire front as there
are a number of ways that a fire could burn to the final perimeter.
We employee the same evolution scheme as the prior experiment
but use a different cost function to drive evolution. Individuals are
evaluated for fitness after any single time-step of the simulation.
We run a simulation according to an individual distribution an
evaluate its success at predicting one time step ahead by taking the
IoU between the predicted burn set and the true burn set.

We use a population of 100 individuals, each run for 100 genera-
tions within each repetition. Again, the results of each repetition
were saved, yielding a total of 20 runs from which data could be
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Figure 6: The Logistic and GP models come within %10 of
producing the same burn pattern as the underlying spread-
ing function. This indicates that the GP has learned the
short term spreading pattern in this environment.

Figure 7: The logistic model learned to 83% accuracy within
the first 20 generations. The GP shows a much slower learn-
ing rate but approaches the same average fitness. All models
display highly variant results as indicated by present error
bars.

extracted. Mutation and crossover rates were 0.08 and 0.8 respec-
tively. We first examine the fitness with respect to each generation,
see Fig. 7.

The constant model did not change fitness throughout the en-
tirety of the evolutionary run and with each passing evaluation
or generation. However, the GP and logistic models demonstrated
different behavior than reported in the first experiment, with the
logistic method outperforming the GP model in both number of

Figure 8: The constant model demonstrated abnormally
high performance; even outperforming the GPmodel in the
beginning of the evolutionary run. The GP models grows in
fitness over evaluations and approaches the performance of
the logistic model.

evaluations to convergence and overall maximum fitness reached.
Even considering the variance of each model’s data, the logistic
method demonstrated a far stronger advantage in the multi time-
step experiment.

The constant model demonstrated expected performance, while
the logistic and GP models performed similarly to one another.
However, the fitness over generations showed high variance in in
Fig. 7 with error bars covering just over a full tenth of the fitness
scale (0.1). Furthermore, we examined the overall performance of
the models over the course of 20 repetitions in Fig. 9.

While being tested on unseen environments, the constant model
performed significantly worse, while the GP and logistic model
performed comparably.

4 DISCUSSION
We developed a model that learns the spreading behaviors of syn-
thetic wildfires based on environmental, atmospheric data coupled
with historic fire burn perimeters. These data-sets can be synthetic
or real. We have shown that the macro spreading behaviors can be
learned by evolving the spreading function at differing temporal
resolutions. We show that the uninitialized population of algebraic
expressions can evolve to produce prediction accuracy’s compara-
ble to the true underlying spreading function. We will next discuss
some of the structural components of the evolution process.

4.1 Parameter tuning
An essential part of optimizing evolutionary algorithms is setting
the correct hyper parameters. We choose to consider mutation and
crossover for tuning. Using a grid search, crossover and mutation
rate were both tuned to optimize final fitness on a held out valida-
tion set. A 5 fold cross validation was used. These parameters were
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Figure 9: The constant and GPmodels demonstrated compa-
rable training fitnesses, while the logistic model dominates.
The true distribution is used to recreate a 20 fires to repre-
sent the true stochastic upper bound on performance.

tuned for the constant and logistic null models under an initial/final
landscape fitness function scheme.

The genetic program was tuned by finding the optimal crossover
rate sweeping over values [0.5, 0.6, 0.7, 0.8]while holding the muta-
tion rate constant at 0.1. The optimal crossover rate was then used to
find the optimalmutation rate sweeping over values [0.1, 0.2, 0.3, 0.4, 0.5]
with the same experimental design described in Section 2.3. In fu-
ture work these hyper-parameters would also be tuned with a grid
search.

Table 1: Optimal Hyper-Parameters

Model Crossover Rate Mutation Rate
Constant 0.7 0.8
Logistic 0.4 1.0
GP 0.8 0.08

We note that the optimal mutation rate for the Logistic Model is
1. This indicated that the Logistic model is primarily evolving from
selection and mutation.

Additionally in the presented result sets, the constant and logis-
tic model often held initial fitnesses significantly higher then the
the GP model. We determined that this was due to the GP needing
to learn the optimal distributions of outputs to become a true proba-
bility distribution. Initial distributions can feasibly contain negative
numbers resulting in no spreading. Alternatively, the logistic model
will implicitly produce a distribution bounded in [0, 1].

4.2 Optimal Function Forms
While the accuracy distributions of the fittest indicated that the
GP can learn a function that will reproduce the spreading patterns,
we are also interested in the functional form of the solutions and

how close they are to the balanced logistic function. We track the
mean and max length of the fittest individuals over 20 reps for 100
generations. The results are displayed in Fig. 10

Figure 10: Over time, the size distribution of solution in-
creases. This type of trend can indicate code bloat. However,
there is a reduction in size acceleration after the 40 genera-
tions.

We note that as the population evolves, the individuals grow
larger in length. Code-bloat is a problem common to genetic pro-
grams and can lead to over fitting and loss of model generalization.
To reduce this problem, in future iterations of the project stricter
tree depth or node count limitations could be enforced. A fundamen-
tal problem present at this resolution of simulation is heterogeneity
of solutions. I.e. multiple solutions can potentially generate the
same behavior, achieving the same fitness. Heterogeneity makes
uncovering any causal relationships very difficult. We present two
example expressions sampled from the final evolved population.

True Solution : logit[p( ®F )] = −7 + 6ω + 0.2γ + 0.2θ + 0.8ϕ

Fitness = 0.80 : logit[p( ®F )] = −3.88 + 0.43ω + 5.25γ + 0.10θ − 0.43ϕ

Fitness = 0.85 : logit[p( ®F )] = −7.52 + 7.15ω + 0.22γ + 0.27θ + 0.87ϕ

We see that both evolved solutions produce high fitnesses but use
different coefficients. While this may be suitable for pure prediction
tasks, we note that this is a drawback to this method. We conjecture
that this may have to do with the simplistic nature of the synthetic
data-sets. Further, the the full genetic program produces wild results
as shown below.

True Solution : logit[p( ®F )] = −7 + 6ω + 0.2γ + 0.2θ + 0.8ϕ
Fitness = 0.71 : (−0.32 + ϕ) ∗ ϕ

Fitness = 0.79 :
ω4 ∗ ϕ

γ
− 9.76 ∗ θ

These solutions do not closely resemble the true solution, despite
having high fitness values. In future iterations, we would like to
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constrain the complexity of the solution as a second objective to
fitness.

4.3 Limitations and Future Steps
As is the case with many models, there are many assumptions
that are held in this model that could be relaxed with additional
environmental layers. Most importantly, we have considered fuel
sources to be homogeneous and all landscapes are comprised of
tree fuel beds. Of course in reality, there are complex distributions
of fuel types and this can have a huge effect on fire spreading
behavior. Additionally, we assume uniform tree height, which has
also been shown to be an important factor in heat transfer and
material ignition [25]. We also assume that fire can only spread
between neighboring cells on the grid; however, embers can spread
to disconnected patches of vegetation starting "spot fires". While
these assumptions are clear limitations to the applicability of the
model, adding these features to a future model is highly feasible
and would not introduce a noticeable increase of complexity.

The obvious next step of this project is further optimization,
then validation of the method using real wildfire data. There are
several suitable datasets that are available to validate this method,
including the 2011 Richardson Wildfire and 2016 Fort McMurray
wildfire, both of which took place in Northern Alberta. These data
sets are openly available through the NASA’s EarthExplorer Data
Portal [31]. The accompanying weather data is available through
the Canadian Weather service [3]. The results of this experiment
could then be directly compared to the recent work by [8]. These
two fires serve as a perfect train and test set as they took place in a
very similar climate at different times.

Additionally, we hope to apply both experiment one and ex-
periment two as a joint multi object fitness function. This way,
individuals that can do short and long term prediction are selected
for evolution.

5 CONCLUSIONS
We propose a genetic program embedded inside a cellular autamata
simulatingwildfires in different synthetic landscapes.We found that
the genetic program is able to capture the behavior of the wildfire
to produce burns on synthetic data sets that are realistic to burns
generated by the underlying spreading function. We summarize
some of the main takeaways from this work.

• On average, the GP is well suited to recapture the spreading
patterns produced by the balanced logistic function. The GP
produces average accuracy’s within 15% - 30% of the true
spreading function for experiments 1 and 2 respectively.

• Macro spreading behaviors can be learned by tuning the
spreading function at differing temporal resolutions

• Evolved solutions are subject to code bloat and do not repre-
sent the realistic driving rule-set.

While some of the typical problems with black-box prediction are
still present in this model, it is exciting to see that synthetic spread-
ing behavior can be predicted with a moderate accuracy.
This research adds to a new avenue for evolutionary methods to
learn spreading rules for cellular automaton based simulations. In
the future, we would like to validate this method on a data-set of

ground truth remote sensing atmospheric and historic fire perime-
ter images.
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